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Abstract

To determine what deductions are it does not seem sufficient to know
that the premises and conclusions are propositions, or something in the
field of propositions, like commands and questions. It seems equally, if
not more, important to know that deductions make structures, which
in mathematics we find in categories, multicategories and polycate-
gories. It seems also important to know that deductions should be
members of particular kinds of families, which is what is meant by
their being in accordance with rules.
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1 Functions of language

In a terminology like that of the old logic, the notion of deduction will be for
us primarily a hypothetical and not a categorical notion. (This use of cat-
egorical should not be confused with categorial, which is found later in this
paper, and which, according to the Ozford English Dictionary [23], means
“relating to, or involving, categories”; unfortunately, in mathematical cate-
gory theory categorical dominates in the sense of categorial.) The distinction
between categorical and hypothetical is found when we speak about categor-
ical and hypothetical proofs. The latter is a proof under hypotheses, while
the former depends on no hypothesis. Both may involve deduction, but we
will be concerned here with deduction as found in hypothetical proofs.

Schroeder-Heister (together with P. Contu in [22], Section 4, in [20], Sec-
tion 3, and in [21]; see also [7]) states that the reigning semantics—both
classical semantics based on model theory and constructivist proof-theoretic
semantics—is based on dogmas, the main one of which may be formulated
succinctly by saying that categorical notions have primacy over hypothetical
notions. We conform to this dogma when we take the notion of proposition,
a categorical notion, to have primacy over the notion of deduction, a hypo-
thetical notion. We conform to the same dogma when we take that, among
functions of language, asserting, which is tied to propositions, is more basic
than deducing.

The question for us here should not be what function of language is
the most important in general, but what function of language is the most
important for logic. FEven if it were the case that asserting is the most
important function of language in general, it could happen that, because of
the specific goals it has, logic, though it takes into account the importance
of asserting, gives precedence to the function of deducing. Even if asserting
is the most important function of language in general, for a specific area



another function may have precedence. In the nomenclature of a science
wouldn’t the most important function of language consist in naming rather
than in asserting?

It is questionable however that there is a most important function of lan-
guage in general. Following Frege’s context principle from the introduction
of the Grundlagen der Arithmetik “never to ask for the meaning of a word
in isolation, but only in the context of a proposition” [14], and following the
Wittgenstein of the Tractatus [25], as usually understood, the most impor-
tant function of language should be asserting. The belief that there is such
a function and that this function is asserting was however rejected by the
Wittgenstein of the Philosophical Investigations [27]. The later Wittgenstein
said that, using his terminology, there may be language games, appropriate
to particular forms of life, where various functions of language like command-
ing, or questioning, would have precedence over asserting, and it could not
be said that these language games are less fundamental. They are not mean-
ingful only because behind them lurks somehow the activity of asserting.

Philosophers, scientists, those living a theoretical life, were inclined since
ancient times to give precedence to naming, and more recently, as it hap-
pened with Frege and Wittgenstein in the Tractatus, they gave precedence
to asserting. (The late Frege wanted to fuse the two activities.) But does
language acquire meaning primarily in theoretical life? Are not the quarters
where that life is led (something like a university campus, or a leisurely res-
idential upper-class quarter) rather lately built and not central quarters in
the city language (see [27], § 18)7?

Even though it is not essential to agree with the later Wittgenstein on
this point, it helps to do so if we want to claim without worry that in logic the
most important function of language is deducing. It is strange that one has to
defend nowadays this rather venerable opinion, but so many developments in
the philosophy of modern logic and the philosophy of language spoke against
it in the last two centuries.

Textbooks of logic in the second half of the twentieth century would
often start with a definition of logic as a human endeavour concerned with
deduction, and would practically not mention deduction in the remainder
of the book. It is only as the century was moving to its close that natural
deduction or related matters started getting ground in textbooks of logic.



2 Deductions not necessarily based on
propositions

A deduction is usually taken to be a transition, a passage, from the premises
to the conclusion. To simplify matters, let us assume that the premises,
which are finitely many in numbers, have all been collected with the help
of a connective like conjunction into a single one. Henceforth, until the
penultimate section, we will speak only about deductions that are a transition
from one premise to one conclusion. Such deductions can mimic all the
others.

The terms transition and passage in the preceding paragraph are far from
being completely clear, and we shall return to them later, at the beginning
of the third section. For the time being, let us concentrate on the premise
and the conclusion. These are usually taken to be propositions, and by
that is meant pieces of language that can be asserted. So it seems that
our, rather common, characterization of deduction presupposes that we have
propositions. Hence deducing presupposes asserting.

Could one imagine a deduction where one would pass from something
that is not a proposition as a premise to something that is not a proposi-
tion as a conclusion? A deduction from a command to a command, or a
deduction from a question to a question? Or, non-uniformly, a deduction
from a proposition to a command, or from a command to a question? (In
[24] and references therein one may find a defence of deductions where com-
mands occur as premises and conclusions together with propositions. For
the logic of questions, one may consult [16], and references therein; I don’t
know however of a reference dealing explicitly with deductions where ques-
tions occur as premises and conclusions, together perhaps with propositions
or commands.)

Let us take a brief look at the uniform deductions, from a command to
a command, or from a question to a question. Kolmogorov’s contribution
in [17] to the interpretation of intuitionistic logic that bears his name, be-
sides those of Brouwer and Heyting, suggests that we should understand a
deduction in constructive mathematics as taking us not from a proposition
to a proposition, but from a problem to a problem. A problem however is
something that does not seem to be necessarily tied with asserting. When
the solution of a problem is expressed by a proposition, the statement of that
problem may be a command, or a question. If the solution of our problem



is “For x, y and z being respectively 3, 4 and 5 we have 22 + y*> = 22", then
the problem could be the command “Find three natural numbers z, y and z
such that 22 + % = 22!” or the question “Are there three natural numbers
x, y and z such that 22 + 3% = 2277,

Kolmogorov’s examples of problems in [17] are expressed by commands,
but it seems that they could equally well be expressed by questions. It is not
however clear in these examples that the solution should be expressed by a
proposition rather than by producing one or several objects, i.e. by naming
them.

From x? + y* = 22 one can deduce (2 + z)(z — z) = y*. Can’t we say
therefore that from the command “Find three natural numbers x, y and
2 such that 22 + y?> = 221" as a premise one can deduce the command
“Find three natural numbers x, y and z such that (z + z)(z — x) = y?I”
as a conclusion? Making one command would yield making the other. The
second command would follow from the first, it could be inferred from it.
And can’t we say that from the question “Are there three natural numbers
x, y and z such that 22 +y? = 227" as a premise one can deduce the question
“Are there three natural numbers z, y and z such that (z +x)(z — z) = y*?”
as a conclusion? Making one question would yield making the other. The
second question would follow from the first, it could be inferred from it.

To make such a deduction with commands it is not necessary to assume
that the command in the premise is actually made, as in deductions with
propositions it is not necessary to assume that the premise is actually as-
serted. Analogously, to make such a deduction with questions it is not nec-
essary to assume that the question in the premise is actually put.

To make a deduction with propositions it does not matter whether the
premise is true or not. The premise being false does not invalidate the de-
duction. It would invalidate it as a proof, if the deduction was proposed
as a proof of the conclusion. As a deduction simpliciter, it is however per-
fectly legitimate with a false premise. Analogously, to make a deduction
with commands it would not matter whether the premise can be fulfilled or
not. The premise being impossible to fulfil would not invalidate the deduc-
tion. With propositions the deduction may serve to show that the premise is
false because it yields a false conclusion, as in reductio ad absurdum. With
commands, the deduction might serve to show that the premise cannot be
fulfilled, because it yields a conclusion that cannot be fulfilled.

Commands here are assumed to have two fulfilment values: can be fulfilled
and cannot be fulfilled, but it is not clear that therefore the logic of commands
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should be taken as fulfilment-functional and two-valued. The negation of a
problem p need not be interpreted as it is not possible to fulfil p, but as from
the assumption that p can be fulfilled one can derive a contradiction, which
is in tune with intuitionistic logic (see [17]). The implication of that logic
may be tied to deduction, and hence it would be intuitionistic.

Can the notion of deduction be widened so as to cover also non-uniform
deductions involving propositions, commands and questions, like those men-
tioned above? Not all of these deductions need make sense. It is indeed not
easy to see what would be a deduction from a command to a question. It
could however again be a transition from a problem to a problem, as sug-
gested by Kolmogorov. Deductions from propositions to commands, and vice
versa, from commands to propositions, are easier to conceive, and have been
examined in [24].

We shall next consider a matter that would extend even more the range
of the application of the word deduction, and go beyond the linguistic sphere.
We would thereby transcend its widest application in this sphere.

Can one make deductions involving non-linguistic entities as premises
or conclusions? Could one take as a premise the perception of something
small ¢ and something big b, and deduce from that as a conclusion the
proposition that a is smaller than b? Can this transition from a perception to
a proposition be called a deduction? And can one deduce from a proposition
a perception, not of something external, but a mental image? And can
one deduce one mental image from another mental image? Why should this
widening of the application of the word deduction to the non-linguistic sphere
represent a danger for the mathematical theory of deduction, which it is the
duty of logic to formulate and investigate, and which we will consider in the
next two sections?

We will not go so far as to claim that the premise and conclusion of
a deduction can be anything. It seems that one could take a name as a
premise or a conclusion of a deduction only in an elliptical sense. From the
context one can find the proposition involving the name for which the name
stands. Without that context, from a pure name, it is not clear that one
could deduce anything. (Kolmogorov’s solutions that are objects, which we
mentioned above, could be taken as being solutions in an analogous elliptical
sense. )

It does not seem unreasonable to claim however that premises and con-
clusions can be other things than propositions. Formulae with free variables



are tied to propositions, but are not strictly speaking propositions.* These
things, and things like commands and questions, may perhaps be tied in some
way with propositions—though they are not propositions, they are somehow
in the same field. On the other hand, the connection with propositions in
the case of perceptions and mental images becomes less clear. Are they too
in the field of propositions?

3 Deductions in categories

One can surmise the following. The specificity of transitions that are deduc-
tions is not made uniquely of the things these transitions connect. Deduc-
tions are not singled out by specifying what can be premises and conclusions.
Something having to do with these transitions themselves, independently of
the premises and conclusions, determines that we have to do with deductions.

What could that be? What are anyway the transitions, the passages, that
deductions are? Is the active, dynamic, component in the word transition
essential?

One can next surmise the following. The specificity of transitions that
are deductions does not consist in this active component. That side of the
matter is psychological and is not essential from a mathematical, and logical,
point of view. (The dangers of psychologism that lurk here are considered in
[7].) Reified in mathematics, deductions are like arrows in a category.

A category is made of a class whose elements are called arrows, and an-
other class whose elements are called objects, and two functions from arrows
to objects—one that assigns to every arrow an object that is its source, and
the other that assigns to every arrow an object that is its target. We also have
operations on arrows, about which we will speak in a moment. Otherwise,
arrows are not specified more closely. They can be anything, provided they
have sources and targets, and the required operations. The notion of arrow
is very abstract, like the notion of point or the notion of line in geometry. It
is anything that satisfies the assumptions, which are very abstract too.

In the same way, deductions have a source, called a premise, and a target,
called a conclusion, and they make a structure given by operations on them.
It happens that on deductions such as we have envisaged them here, with a
single premise and a single conclusion, the main operations are exactly like
the main operations on arrows in categories.

*I am grateful to Thomas Piecha for suggesting this.
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These are the operations that enter into the definition of a category, and
they are the binary operation of composition

f:A—B g:B—C
gef:A—=C

which in terms of deductions is a simple form of cut of sequent systems,
and the nullary operations of identity arrows 14: A — A, which as deduc-
tions are the trivial identity deductions where the premise and conclusion
coincide—the primordial deductions, the axiomatic sequents. The operation
of composition is partial; the target of f must be the source of g for go f to
be defined.

For categories, one assumes associativity of composition:
ftA—=B g¢g:B—C
gof:A—=C h:C — D
ho(gef): A— D

g B—-C h:C—D
f:A—>B hog: B— D
(heg)ef:A— D

he(gef)=(heg)-f,

which makes perfect sense as an equality of deductions—it is about permut-
ing cut with cut in sequent systems. This permuting is involved in usual
cut elimination procedures (see [1], Section 2), and less usual ones (see [4],
Chapter 1). It is however interesting in its own right, independently of these
procedures. It is a perfectly natural assumption about deductions, with
which they make the deepest kind of mathematical structure—a structure
one finds in all categories, and in particular in the category of sets (which we
will consider below).

Let us note that if, as in the Curry-Howard correspondence, one des-
ignates deductions by typed lambda terms, which is congenial with under-
standing proofs in the categorical, and not the hypothetical, i.e. categorial,
way (see [7], Section 4), then composition of deductions is represented by
substitution. With that, associativity of composition becomes invisible, un-
less one introduces, as it is sometimes done, an explicit substitution operator
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(see [19]). This unary operator is obtained by currying binary composition.
Instead of geo f, we have something like g(z, f), which corresponds to “g
where for x one substitutes f”, and where (x, f) is a unary operator applied
to g. Analogously, h(y, g) corresponds to “h where for y one substitutes ¢”,
and associativity of composition becomes

h{y, g(z, f)) = h(y, g)(x, f).

It does not seem we will get closer to associativity with other notations
for explicit substitution (like, for example, the notation with inverse order
suggested by [13], where g(x, f) is replaced by something like (f,z)g, and
our equation becomes ((f,z)g,y)h = (f,x){g,y)h, or a vertical notation like
g%, with which our equation becomes hgjf = h¥%).1 Tt is improbable that
one could have reached the notion of category, and realized its importance,
by conceiving and representing matters pertaining to composition in that
manner.

In categories one assumes moreover identity laws, i.e. laws of composing
with identity arrows:

1,: A=A f:A—>B
fO]_AiA—)B
f:A—>B 13: B— B
1B°fIA—>B

which in terms of deductions say that composing a deduction with an identity
deduction, either on the side of the premise or on the side of the conclusion,
leaves the deduction unchanged. This again makes perfect sense as an equal-
ity of deductions, and is an essential ingredient of cut elimination. When the
cuts have been pushed to the top of the derivation, where they are performed
with axiomatic sequents, they disappear.

Lambek (see [18]) called deductive system the notion generalizing cat-
egories by not assuming the associativity of composition and the laws of

TRoy Dyckhoff was kind to comment upon this.
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composing with identity arrows. In [3] and [4] (Section 1.9) one can see
how this notion of deductive system is characterized proof-theoretically by a
representation result in the style of Stone, and how the notion of category
is characterized proof-theoretically by a representation result in the style of
Cayley.

There may be further operations on arrows, with which we enter into the
field of categories with additional structure. One such operation is tied to the
biendofunctor of product, which corresponds to conjunction, both in classical
and intuitionistic logic. Coproduct, with which another such operation is
tied, corresponds to disjunction, in both logics again. With product and
coproduct we obtain equations between deductions that make perfect sense
in proof theory. They stem from adjointness of functors, and are related to
normalization in natural deduction and cut elimination in sequent systems
(see [4], [5] and [9]). Other equations, like those involving distributivity
of product over coproduct, i.e. conjunction over disjunction, may, but need
not, be based on adjointness. Intuitionistic logic will differ essentially from
classical logic by tying implication to adjointness (see [2] and [4]), which
should not be done for classical, material, implication (see [9], Chapter 14).
We will not go further into categorial proof theory, which deals with the
equations between deductions suggested by such categories with additional
structure. Let it be said only that it is remarkable how equations important
in mathematics in general, or in particular fields of mathematics, reemerge
as perfectly sensible equations between deductions (see [8]).

What was surmised above is that the structure that deductions make with
such operations is an essential ingredient in the notion of deduction. Could
one go as far as to take this as the main ingredient? As in category theory,
the structure of arrows would be the main thing. And, as in category theory,
the arrows would be more important than the objects. With deductions the
objects are the premises and conclusions, and these premises and conclusions,
whatever they are precisely—propositions, commands, questions, problems,
or something else—would not precede the arrows. Deducing would not be
preceded by asserting, or another function of language.

When functions are reified as sets of ordered pairs, the active, dynamic,
component in the notion of function is lost. This component, which comes
from psychology, is also lost in the reification brought by the categorial notion
of function, where a function is an arrow in a category. Categorially, functions
in the category Set, where the objects are sets and the arrows are functions,
are characterized through composition and identity functions. The same
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operations characterize deductions in general.

Although Set has the structure that deductions make, it is not natural
for its objects to be called premises and conclusions, and for its arrows to
be called deductions. One reason may be the nature of these objects, which
are not in the field of propositions (see the end of the preceding section).
Another reason might be that we have too many of these deductions. Any
two objects would be connected by a deduction, except when the premise
is not empty while the conclusion is empty. Deductions, in the categories
where arrows may be more naturally designated by that term, are usually
more discriminatory. There are more objects not connected by arrows.

The structure of deductions imitates the structure of the category Set
even more when they involve the binary connectives of conjunction, disjunc-
tion and implication, together with the nullary connectives T and L. This
structure, appropriate for intuitionistic propositional logic, imitates Set with
the biendofunctors of product, coproduct and exponentiation (for exponen-
tiation we have covariance in the base and contravariance in the exponent),
together with the terminal and initial objects, i.e. a singleton and the empty
set. Still, the arrows of the category Set could not be taken as deductions,
but only as their model. (The question of models of deductions was discussed
in [6].) This is the model that stands behind the standard proof-theoretic
semantics for intuitionistic logic, which through the Curry-Howard corre-
spondence is tied to the typed lambda calculus.

Matters become clearer when in conceiving this semantics we do not con-
form to the dogma mentioned at the beginning. When we look upon this
semantics hypothetically, and not categorically, as in the typed lambda cal-
culus, we will end up in the categorial setting of Set. With the typed lambda
calculus we also end up in the sets of Set, but the categorial setting is hidden.

In [9] one may find a categorial setting for the proof theory of classical
conjunctive-disjunctive logic different from that of Set, which leads to a
categorial setting for the proof theory of the whole of classical propositional
logic where a characterization through adjunction for classical implication is
relinquished. Implication is again characterized through adjunction in the
categorial setting for the proof theory of linear propositional logic without
modalities, which is investigated in [10].
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4 Deductions in multicategories and
polycategories

Let us consider now the deductions where we can have more than one premise,
though we still have a single conclusion. Such deductions, which correspond
to Gentzen’s singular sequents, with not more than one formula on the right-
hand side, correspond to arrows f: I' — A in Lambek’s multicategories, some-
times called multiarrows, where capital Greek letters like I' stand for finite
sequences of objects. A particular kind of multicategory is an operad, where
[’ in multiarrows f: I' — A is a finite sequence every member of which is A.
The algebraic notion of operad, which has arisen in algebraic topology, has
been much investigated lately. (References concerning the notions of operad
and multicategory, and a discussion of matters concerning them, may be
found in [11].)

Multicategories can be mimicked by categories with additional structure
like monoidal categories, which have a binary operation on objects like con-
junction, enabling us to bind the objects in I' into a single object. The
particular structure of multicategories is however important and interesting,
and we shall now examine one aspect of it.

In multicategories instead of composition we have insertion operations
on multiarrows:

f:T—=A g:AJA,© — B
gaf: A0 - B

which correspond to Gentzen’s cut of singular sequents. The notation g < f
is ambiguous, because it does not specify the cut formula. This ambiguity is
remedied with the more precise notation of [11], but for the comments we will
make here we can do with the less precise notation we have just introduced.

In multicategories, besides the associativity of insertion that corresponds
to the associativity of composition in categories:

f:I'—-A ¢g:AJA©6—-B
gaf: A0 - B h:11,B,% — C
ha(g<f): ILAT, 0% = C

g AAO—B hlIlBY—C
f:I'—=A h<ag:1I,A,A, 0, — C
(h<ag)a f:I,AT,0,% = C
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ha(gaf)=(hag)af,

we have another kind of associativity of insertion, which involves also com-
mutativity:

f:T—=A h:AAOGBII—C
g: 3 — B haf:A 1,0, B, 11— C
(haf)<g: A T,0,5 11— C

g:X—>B h:AAO BIl—C
f:Ir—A hag: AA, 0,311 — C
(hag)af: AT,0,5 11 - C

(haf)ag=(h<g)af,

This other associativity is interesting algebraically and combinatorially. It is
also related to interesting polyhedra (see [11], Section 13).

In polycategories we have arrows I' — A, which correspond to the plural
sequents of Gentzen, where there may be several formulae on the right-hand
side too. The arrows of polycategories correspond to the deductions of clas-
sical logic, which are investigated graph-theoretically in [12]. For polycate-
gories and their operations of insertions, which correspond to Gentzen’s cut
for plural sequents, we have besides the associativity and the associativity
involving commutativity on the left-hand side, analogous to those we have
just given for multicategories, another associativity involving commutativity
on the right-hand side (see [12], Propositions 2.1-3).

These plural deductions of classical logic are not very natural. They have
been invented following Gentzen’s suggestion, and not found by describing
deduction in real life. They provide however the best means to understand
classical logic proof-theoretically. They are implicit in the categorial ap-
proach to the proof theory of classical logic of [9], and in the categorial
approach to the proof theory of linear logic of [10].

The remarks made here on deduction lead to the following tentative char-
acterization of this notion. A deduction is an arrow in a category, a mul-
ticategory, or a polycategory, where the objects are more or less akin to
propositions—something in the field of propositions.
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5 Rules for deductions

Nothing has been said up to now about deductions being in accordance with
rules. When we deal with formal deductions, i.e. the deductions of logic, and
they are conceived as arrows in categories with additional structure, which is
brought by something like the functors corresponding to connectives that we
mentioned in the third section, then our deductions are members of families
of arrows indexed by the objects of the category, which are usually natural
transformations involving the functors we have just mentioned. Being in
accordance with rules here amounts to being members of such families, and
the schematic character of the rules is given by the indexing by objects of the
members of our families of arrows. With this indexing, the objects that are
indices serve to make the sources or targets of the arrows, i.e. the premises
or conclusions of the deductions. For example, the natural transformation p*
of the first projection for conjunction elimination with the indices being the
objects A and B gives the deduction p£‘7B: ANB — A.

Is this indexing necessary for the notion of rule for deduction? Can a
rule correspond to a family of arrows that is a singleton, without indexing?
Can one call rule something which covers a single deduction, with which a
single deduction is in accordance? In or outside logic, is generality necessary
for rules? Should a rule always cover many cases? Can a rule cover a single
case?

Deductions that are not in logic may still resemble the formal deductions
of logic by being in accordance with schematically given rules. Such would
be the deduction from the premise “The day before yesterday was Thursday”
to the conclusion “Tomorrow will be Sunday” (though it is not immediately
clear how to formulate the rules in question). If they cannot be found in logic,
could one find outside logic deductions that are not instances of something
schematic? Shouldn’t they be in accordance with rules? What would be the
appropriate notion of rule there? When bereft of its psychological or socio-
logical aspects, like compulsoriness, would this notion of rule leave something
to be investigated by precise, perhaps even mathematical, means? Grammar
and linguistics may give an inspiration for considering such matters, which
are close to the concerns of the later Wittgenstein.

In [26] (end of Lecture XIII, Lent Term 1935) Wittgenstein taught that
“a rule is something applied in many cases”, but then disparaged this re-
mark off-handedly. He considered it useless for learning how to use a rule.
Why must this remark serve that purpose? In another context, where the
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purpose is to explain what rules are and not to teach how to use them, it
may prove important to determine whether generality is necessary for rules.
Wittgenstein returned to this question in [27] (§ 199) and in other places (for
references see [15], Section 199, pp. 120-124), with consideration towards the
generality of rules, which he put within a wider scheme.

Wittgenstein ended the lecture from which we have quoted above by a
nice and enigmatic picture: “A rule is best described as being like a garden
path in which you are trained to walk, and which is convenient.” A path
is usually something taken many times, by many people. If a rule is like a
path, the deductions in accordance with the rule could perhaps be like many
particular walks on this path. We will however try to consider more closely
this and other matters mentioned in this section on another occasion.
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